#include <string.h>
#include "absl/types/optional.h" #include "absl/types/variant.h"
#include "common_video/h264/h264_common.h" #include "common_video/h265/h265_common.h" #include "common_video/h265/h265_pps_parser.h" #include "common_video/h265/h265_sps_parser.h" #include "common_video/h265/h265_vps_parser.h" #include "modules/include/module_common_types.h" #include "modules/rtp_rtcp/source/byte_io.h" #include "modules/rtp_rtcp/source/rtp_format_h265.h" #include "modules/rtp_rtcp/source/rtp_packet_to_send.h" #include "rtc_base/logging.h"
using namespace rtc;
namespace webrtc { namespace {
enum NaluType { kTrailN = 0, kTrailR = 1, kTsaN = 2, kTsaR = 3, kStsaN = 4, kStsaR = 5, kRadlN = 6, kRadlR = 7, kBlaWLp = 16, kBlaWRadl = 17, kBlaNLp = 18, kIdrWRadl = 19, kIdrNLp = 20, kCra = 21, kVps = 32, kHevcSps = 33, kHevcPps = 34, kHevcAud = 35, kPrefixSei = 39, kSuffixSei = 40, kHevcAp = 48, kHevcFu = 49 };
static const size_t kHevcNalHeaderSize = 2;
static const size_t kHevcFuHeaderSize = 1; static const size_t kHevcLengthFieldSize = 2;
enum HevcNalHdrMasks { kHevcFBit = 0x80, kHevcTypeMask = 0x7E, kHevcLayerIDHMask = 0x1, kHevcLayerIDLMask = 0xF8, kHevcTIDMask = 0x7, kHevcTypeMaskN = 0x81, kHevcTypeMaskInFuHeader = 0x3F };
enum HevcFuDefs { kHevcSBit = 0x80, kHevcEBit = 0x40, kHevcFuTypeBit = 0x3F };
}
RtpPacketizerH265::RtpPacketizerH265( rtc::ArrayView<const uint8_t> payload, PayloadSizeLimits limits, H265PacketizationMode packetization_mode) : limits_(limits), num_packets_left_(0) { RTC_CHECK(packetization_mode == H265PacketizationMode::NonInterleaved || packetization_mode == H265PacketizationMode::SingleNalUnit);
for (const auto& nalu : H264::FindNaluIndices(payload.data(), payload.size())) { input_fragments_.push_back( payload.subview(nalu.payload_start_offset, nalu.payload_size)); }
if (!GeneratePackets(packetization_mode)) { num_packets_left_ = 0; while (!packets_.empty()) { packets_.pop(); } } }
RtpPacketizerH265::~RtpPacketizerH265() {}
size_t RtpPacketizerH265::NumPackets() const { return num_packets_left_; }
bool RtpPacketizerH265::GeneratePackets( H265PacketizationMode packetization_mode) { for (size_t i = 0; i < input_fragments_.size();) { int fragment_len = input_fragments_[i].size(); int single_packet_capacity = limits_.max_payload_len; if (input_fragments_.size() == 1) single_packet_capacity -= limits_.single_packet_reduction_len; else if (i == 0) single_packet_capacity -= limits_.first_packet_reduction_len; else if (i + 1 == input_fragments_.size()) { single_packet_capacity -= limits_.last_packet_reduction_len; } if (fragment_len > single_packet_capacity) { PacketizeFu(i); ++i; } else { PacketizeSingleNalu(i); ++i; } } return true; }
bool RtpPacketizerH265::PacketizeFu(size_t fragment_index) { rtc::ArrayView<const uint8_t> fragment = input_fragments_[fragment_index]; PayloadSizeLimits limits = limits_; limits.max_payload_len -= kHevcFuHeaderSize + kHevcNalHeaderSize;
if (input_fragments_.size() != 1) { if (fragment_index == input_fragments_.size() - 1) { limits.single_packet_reduction_len = limits_.last_packet_reduction_len; } else if (fragment_index == 0) { limits.single_packet_reduction_len = limits_.first_packet_reduction_len; } else { limits.single_packet_reduction_len = 0; } } if (fragment_index != 0) limits.first_packet_reduction_len = 0; if (fragment_index != input_fragments_.size() - 1) limits.last_packet_reduction_len = 0;
size_t payload_left = fragment.size() - kHevcNalHeaderSize; int offset = kHevcNalHeaderSize;
std::vector<int> payload_sizes = SplitAboutEqually(payload_left, limits); if (payload_sizes.empty()) return false;
for (size_t i = 0; i < payload_sizes.size(); ++i) { int packet_length = payload_sizes[i]; RTC_CHECK_GT(packet_length, 0); uint16_t header = (fragment[0] << 8) | fragment[1]; packets_.push(PacketUnit(fragment.subview(offset, packet_length), i == 0, i == payload_sizes.size() - 1, false, header)); offset += packet_length; payload_left -= packet_length; } num_packets_left_ += payload_sizes.size(); RTC_CHECK_EQ(0, payload_left); return true; }
bool RtpPacketizerH265::PacketizeSingleNalu(size_t fragment_index) { size_t payload_size_left = limits_.max_payload_len; if (input_fragments_.size() == 1) payload_size_left -= limits_.single_packet_reduction_len; else if (fragment_index == 0) payload_size_left -= limits_.first_packet_reduction_len; else if (fragment_index + 1 == input_fragments_.size()) payload_size_left -= limits_.last_packet_reduction_len; rtc::ArrayView<const uint8_t> fragment = input_fragments_[fragment_index]; if (payload_size_left < fragment.size()) { RTC_LOG(LS_ERROR) << "Failed to fit a fragment to packet in SingleNalu " "packetization mode. Payload size left " << payload_size_left << ", fragment length " << fragment.size() << ", packet capacity " << limits_.max_payload_len; return false; } RTC_CHECK_GT(fragment.size(), 0u); packets_.push(PacketUnit(fragment, true , true , false , fragment[0])); ++num_packets_left_; return true; }
int RtpPacketizerH265::PacketizeAp(size_t fragment_index) { size_t payload_size_left = limits_.max_payload_len; if (input_fragments_.size() == 1) payload_size_left -= limits_.single_packet_reduction_len; else if (fragment_index == 0) payload_size_left -= limits_.first_packet_reduction_len; int aggregated_fragments = 0; size_t fragment_headers_length = 0; rtc::ArrayView<const uint8_t> fragment = input_fragments_[fragment_index]; RTC_CHECK_GE(payload_size_left, fragment.size()); ++num_packets_left_;
auto payload_size_needed = [&] { size_t fragment_size = fragment.size() + fragment_headers_length; if (input_fragments_.size() == 1) { return fragment_size; } if (fragment_index == input_fragments_.size() - 1) { return fragment_size + limits_.last_packet_reduction_len; } return fragment_size; };
while (payload_size_left >= payload_size_needed()) { RTC_CHECK_GT(fragment.size(), 0); packets_.push(PacketUnit(fragment, aggregated_fragments == 0, false, true, fragment[0])); payload_size_left -= fragment.size(); payload_size_left -= fragment_headers_length;
fragment_headers_length = kHevcLengthFieldSize; if (aggregated_fragments == 0) fragment_headers_length += kHevcNalHeaderSize + kHevcLengthFieldSize; ++aggregated_fragments;
++fragment_index; if (fragment_index == input_fragments_.size()) break; fragment = input_fragments_[fragment_index]; } RTC_CHECK_GT(aggregated_fragments, 0); packets_.back().last_fragment = true; return fragment_index; }
bool RtpPacketizerH265::NextPacket(RtpPacketToSend* rtp_packet) { RTC_DCHECK(rtp_packet);
if (packets_.empty()) { return false; }
PacketUnit packet = packets_.front();
if (packet.first_fragment && packet.last_fragment) { size_t bytes_to_send = packet.source_fragment.size(); uint8_t* buffer = rtp_packet->AllocatePayload(bytes_to_send); memcpy(buffer, packet.source_fragment.data(), bytes_to_send); packets_.pop(); input_fragments_.pop_front(); } else if (packet.aggregated) { bool is_last_packet = num_packets_left_ == 1; NextAggregatePacket(rtp_packet, is_last_packet); } else { NextFragmentPacket(rtp_packet); } rtp_packet->SetMarker(packets_.empty()); --num_packets_left_; return true; }
void RtpPacketizerH265::NextAggregatePacket(RtpPacketToSend* rtp_packet, bool last) { size_t payload_capacity = rtp_packet->FreeCapacity(); RTC_CHECK_GE(payload_capacity, kHevcNalHeaderSize); uint8_t* buffer = rtp_packet->AllocatePayload(payload_capacity); RTC_CHECK(buffer); PacketUnit* packet = &packets_.front(); RTC_CHECK(packet->first_fragment); uint8_t payload_hdr_h = packet->header >> 8; uint8_t payload_hdr_l = packet->header & 0xFF; uint8_t layer_id_h = payload_hdr_h & kHevcLayerIDHMask;
payload_hdr_h = (payload_hdr_h & kHevcTypeMaskN) | (kHevcAp << 1) | layer_id_h;
buffer[0] = payload_hdr_h; buffer[1] = payload_hdr_l; int index = kHevcNalHeaderSize; bool is_last_fragment = packet->last_fragment; while (packet->aggregated) { rtc::ArrayView<const uint8_t> fragment = packet->source_fragment; ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], fragment.size()); index += kHevcLengthFieldSize; memcpy(&buffer[index], fragment.data(), fragment.size()); index += fragment.size(); packets_.pop(); input_fragments_.pop_front(); if (is_last_fragment) break; packet = &packets_.front(); is_last_fragment = packet->last_fragment; } RTC_CHECK(is_last_fragment); rtp_packet->SetPayloadSize(index); }
void RtpPacketizerH265::NextFragmentPacket(RtpPacketToSend* rtp_packet) { PacketUnit* packet = &packets_.front(); uint8_t payload_hdr_h = packet->header >> 8; uint8_t payload_hdr_l = packet->header & 0xFF; uint8_t layer_id_h = payload_hdr_h & kHevcLayerIDHMask; uint8_t fu_header = 0; fu_header |= (packet->first_fragment ? kHevcSBit : 0); fu_header |= (packet->last_fragment ? kHevcEBit : 0); uint8_t type = (payload_hdr_h & kHevcTypeMask) >> 1; fu_header |= type; payload_hdr_h = (payload_hdr_h & kHevcTypeMaskN) | (kHevcFu << 1) | layer_id_h; rtc::ArrayView<const uint8_t> fragment = packet->source_fragment; uint8_t* buffer = rtp_packet->AllocatePayload( kHevcFuHeaderSize + kHevcNalHeaderSize + fragment.size()); RTC_CHECK(buffer); buffer[0] = payload_hdr_h; buffer[1] = payload_hdr_l; buffer[2] = fu_header;
if (packet->last_fragment) { memcpy(buffer + kHevcFuHeaderSize + kHevcNalHeaderSize, fragment.data(), fragment.size()); } else { memcpy(buffer + kHevcFuHeaderSize + kHevcNalHeaderSize, fragment.data(), fragment.size()); } packets_.pop(); }
}
|